
EE432 Advanced Digital Design with HDL
Spring 2013

Week 3

Lecture Topic, April 16

We will start with a general review of using state machines to control logic circuits.
Then we will look at handling multiple state machines and alternative state machine
implementations.

Reasons for more than one state machine in system:
• Single state machine too complicated to implement
• Division of labor – tasks run in parallel.
• Multiple clock domains

Communication between cooperating state machines uses a handshake with start
signal, Trig, to “called” SM and finished signal, Fi, going back to calling SM. If clock
source for both is the same then we don't need the “full handshake” used in
asynchronous systems or in cases where we don't want to wait for the other state
machine to finish.

EE432 Spring 2013 Week 3 Page 1 of 9

If we are careful, we can use a Mealy output to trigger . It is very important in this
case the two state machines be on the same clock domain because glitches in the
Mealy output could cause false state transitions.

EE432 Spring 2013 Week 3 Page 2 of 9

If the two state machines are in separate clock domains differing primarily in phase
(if different frequencies, they must be close) we need to synchronize the Trig and Fi
signals to the receiving clock domains.

EE432 Spring 2013 Week 3 Page 3 of 9

The full handshake version is for two state machines where one is not subordinate
to the other. They can be in completely different clock domains (providing the
synchronization shown in the previous page is used!).

State machine 1 waits for SM2 to be not busy (bu=0) , then asserts Trig until SM2
asserts Bu. Note that “busy” is the same signal as not “finished” of the preceding
example. If SM1 needs some result from SM2, it must wait again for bu=0. SM2 has
an analogous handshake. I've drawn it like it is a subordinate state machine, but that
isn't necessary.

EE432 Spring 2013 Week 3 Page 4 of 9

Alternative SM design
When the state machine looks like the one on the left – basically one long sequence
with only alternatives being back to the idle state – then the design is best
implemented using a counter and not the approach we have done in the past. The
SM on the right shows numbered states, the counter values.

EE432 Spring 2013 Week 3 Page 5 of 9

This counter is easily implemented in VHDL as follows assuming n = 100:

Signal state : integer range 0 to 100 := 0;
-- we could use std_logic_vector here as well,
-- but that would require know the number of bits.

Process (clk) begin
 If rising_edge(clk) then
 If state = 100
or (state = 2 and ab = '1')
 or (state = 0 and St = '0') then
-- reset the counter
 state <= 0;
else
 -- increment the counter
 state <= state + 1;
end if;
 end if;
end process;

For even simpler state machines we can implement as a shift register that is basically
a one-hot state machine. In a on-hot design, each flip-flop represents a single state.
Recognize the one shot from EE331? This keeps the state machine "one hot"
because it is important that the SM not be re-triggered before it finishes, which
would allow two flip-flops to be Q=1 and the state machine would be in two states!

VHDL implementation would be:

EE432 Spring 2013 Week 3 Page 6 of 9

This counter is easily implemented in VHDL as follows assuming n = 100:

Signal state : integer range 0 to 100 := 0;

-- we could use std_logic_vector here as well,

-- but that would require know the number of bits.

Process (clk) begin
If rising_edge(clk) then

If state = 100

or (state = 2 and ab = '1')
or (state = 0 and St = '0') then

-- reset the counter

state <= 0;
else

-- increment the counter

state <= state + 1;
end if;

end if;

end process;

For even simpler state machines we can implement as a
shift register that is basically a one-hot state machine.
Recognize the one shot from the first homework
assignment? This keeps the state machine "one hot"
because it is important that the SM not be retriggered before
it finishes.

6

!"#$

%&

'()

'(*

'(+

()

!

"#

" !

"#

" !

"#

"
$%

&' &(&)

This counter is easily implemented in VHDL as follows assuming n = 100:

Signal state : integer range 0 to 100 := 0;

-- we could use std_logic_vector here as well,

-- but that would require know the number of bits.

Process (clk) begin
If rising_edge(clk) then

If state = 100

or (state = 2 and ab = '1')
or (state = 0 and St = '0') then

-- reset the counter

state <= 0;
else

-- increment the counter

state <= state + 1;
end if;

end if;

end process;

For even simpler state machines we can implement as a
shift register that is basically a one-hot state machine.
Recognize the one shot from the first homework
assignment? This keeps the state machine "one hot"
because it is important that the SM not be retriggered before
it finishes.

6

!"#$

%&

'()

'(*

'(+

()

!

"#

" !

"#

" !

"#

"
$%

&' &(&)

Process (clock) begin
 If rising_edge(clock) then
 V1 <= St and not (V1 or V2 or V3);
 V2 <= V1;
 V3 <= V2;
 End if;
End process;

Microprogramming

Another solution to complex state machines is microprogramming. First, a quick
look at traditional SM implementation using a ROM. ROM address lines are driven
from SM inputs and "current state" . The ROM data lines are registered. Some
represent "next state", and others the Moore outputs (because they are registered).
This design is simple but generally inefficient because of the large number of bits
necessary. Using a PAL or PLA simplifies the design in most cases by providing the
equivalent of a sparse ROM.

VHDL implementation would be:
Process (clock) begin

If rising_edge(clock) then

V1 <= St and not (V1 or V2 or V3);

V2 <= V1;
V3 <= V2;

End if;

End process;

Microprogramming

Another solution to complex state machines is microprogramming. First, a quick
look at traditional SM implementation using a ROM. ROM address lines are
driven from SM inputs and "current state" . The ROM data lines are registered.
Some represent "next state", and others the Moore outputs (because they are
registered). This design is simple but generally inefficient because of the large
number of bits necessary. Using a PAL or PLA simplifies the design in most
cases by providing the equivalent of a sparse ROM.

Microprogramming is basically a ROM based state machine design where each
state is similar to a processor instruction. Vertical organization has small
instruction word sizes and executes sequential locations by default while
horizontal organization specifies the next location in each instruction. In the
vertical organization, the data lines used for the conditional next address and
mux are typically shared with the output data lines, with an additional control bit

7

!"#$%&'()*+'&',%-.+/.+*

01/.+*

2&3,)+)-134%!"#%5#%6'*)(1

7.&&'1+%
5+3+'

".+/.+*%
8#--&'9

Microprogramming is basically a ROM based state machine design where each state
is similar to a processor instruction. Vertical organization has small instruction word
sizes and executes sequential locations by default while horizontal organization
specifies the next location in each instruction. In the vertical organization, the data
lines used for the conditional next address and mux are typically shared with the
output data lines, with an additional control bit to determine if the instruction is a
conditional branch or other function. Outputs can be partially encoded to save bits.
For instance, if there are three output signals that are mutually exclusive, then can
be encoded in a single two bit field, saving a bit.

EE432 Spring 2013 Week 3 Page 7 of 9

In the horizontal version, each instruction can specify the next instruction for any
selected input being 1 or being 0. All outputs are available on each instruction.
Variations cut down on the width of the memory by having only one next address
field and having the inputs controlling a single address bit (so addresses are in pairs
when a branch is used. Again, outputs can also be partially encoded (for those that
are mutually exclusive) to save bits.

EE432 Spring 2013 Week 3 Page 8 of 9

Homework Assignment #3, Due April 23

Design a Moore state machine that does nothing but handshaking. It should
implement a full handshake. Place the state machine in a module. The ports should
be: clk and trig as inputs and fi as an output. Of course there is also a clock input.
The state table is:

Current State Next StateNext State Output, fiCurrent State

trig=0 trig=1

Output, fi

S0 S0 S1 0

S1 S1 S2 0

S2 S3 S3 0

S3 S4 S4 0

S4 S0 S4 1

Make a top level with an two instances of the state machines. Connect the fi
outputof the first state machine “through an inverter” to the trig input of the second
machine and the fi output of the second state machine to the trig input of the first
state machine. With the state machines connected to the same clock source, the
state machines will alternate
running. Submit the VHDL for
this part of the assignment.

Now split the clock in two, one
for each state machine, and add
clock synchronizers where the
signals cross the clock domains.
Run one clock at 2.3 times the
frequency of the other. Submit
the simulation output (showing
the trig and fi signals for the
two state machines) and the
VHDL for this part of the
assignment.

Current Project Assignment
Keep up the good work, and don’t forget the journal!

EE432 Spring 2013 Week 3 Page 9 of 9

SMTrig Fi

SMTrig Fi

I SYNC O

I SYNC O

10 MHz

23 MHz

Second Part of Assignment

